Michael Milford has spent more than a decade obsessing over the inner workings of the rat brain. Milford isn't a neuroscientist or a zoologist, though. Chiefly, he's an engineer and a roboticist at Queensland University of Technology, where he's designing robots that would make Dr. Frankenstein drool if he got his kicks from brain modelling and computer vision instead of reanimating the corpses of townspeople.
Milford's latest project blends the navigational ability of a rat with the vision of a human. He's dubbed this a "Frankenstein" approach to robotics in the media, and he believes that such patchwork techniques are not only promising, but practical ways forward to developing artificial intelligence. The reason for this is that the rat brain is fairly well understood by scientists, unlike the human brain.
"Rats represent a really beautiful balance," Milford told me, "because they have a really sophisticated mammal brain, but we understand more about their brain than probably any other mammal, just because they've been studied so extensively."
Digitally modelling rat brains allowed Milford and his team to design a robust robotic navigation system called RatSLAM. "Rat" is included in the title for obvious reasons, and "SLAM" stands for simultaneous location and mapping. RatSLAM reconstructs the rat brain's complex structure of place cells, head orientation cells, and conjunctive grid cells that can take a certain degree of environmental uncertainty into account during navigation, in a simplified form.
No comments:
Post a Comment